
1

1

AFS
(Scale and Performance in a

Distributed File System)

By
Saumitra M Das

2

Motivation
JUSTIFYING DOING ALL THIS WORK

Implement a location transparent distributed
file system on a large scale.
Effects of large scale

Performance degradation
Complication of operations

Motive:
HOW TO SCALE UP A DISTRIBUTED FILE
SYSTEM

2

3

Anatomy of a paper
AFTER JUSTIFICATION HOW WAS THE WORK DONE

Implement prototype
Construct a representative benchmark
Observe your hard work fail
Make changes to make it better
Compare with NFS
Enhance operability

4

Roadmap

Evaluation of an AFS ImplementationEvaluation of an AFS Implementation
Discussion of Design Improvements
Evaluation of the AFS Improvements
Comparative Study with Sun’s NFS
Operational Issues

3

5

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel IPC using files, Lock process
for file locking

Prototype AFS-1 Implementation
Client Server Architecture

Dedicated server process
per client

6

Benchmark

4

7

What is a Load Unit ??

“Throughout this paper the term Load Unit
refers to the load placed on a server by a
single client workstation running this
benchmark. Server load is varied by initiating
the benchmark simultaneously on multiple
client workstations and waiting for all of them
to complete”

8

What calls are the clients
making? (Measurement)
TestAuth and GetFileStat are common Read/Writes only 6% (File Transfers)

Read = 2*Writes
Servers not
balanced

5

9

What happened to the system?
(Benchmarking)

Compare to standalone (1054 s)

Server saturating
After Load = 5

10

What about the poor servers?
Servers not
balanced High CPU Utilization

Why?

6

11

Summary of Part 1
Prototype was evaluated
Poor Performance in some areas

Too many cache validity checks
Server process context switching causes high
CPU utilization
Servers spend time on path traversal
Servers are not balanced
Network resources in the kernel exceeded
Difficult to move user’s directories between
servers

12

Roadmap

Evaluation of an AFS Implementation
Discussion of Design ImprovementsDiscussion of Design Improvements
Evaluation of the AFS Improvements
Comparative Study with Sun’s NFS
Operational Issues

7

13

What should we do now?
Too many cache validity checks

Solution: reduce them!!
Server process context switching causes high CPU
utilization

Solution: reduce the number of processes
Servers spend time on path traversal

Solution: make clients do path traversal
Servers are not balanced

Solution: balance usage by reassignment
Network resources in the kernel exceeded

Solution: RPC over simple datagram
Difficult to move user’s directories between servers

Use of volumes

14

Areas to Improve (4)

Cache Management (Client Server)
cache directory files and symbolic links
only open/close calls involve communications
consistency implemented as callbacks

Name Resolution (Server Client)
volume servers for location info
servers only know fids of local files
client responsible for traversing path names

8

15

Areas to Improve (cont.)

Communication and Server Process
Structure

user-level LWP
user-level RPC integrated into LWP

Low-level Storage Representation
exposes inode through vnode interface
local directory used as cache

16

AFS: Design Intuition
Takes advantage of some observations of typical UNIX
file system workloads and their impact on caching

shared files which are updated infrequently remain valid for long
periods of time
workstations typically have enough spare capacity to allocate
very large on-disk caches (100+MB)
most files are very small (< 10k)
reads are much more common than writes
most applications perform sequential access (not random
access)
most files are accessed by few users (usually one)
temporal locality (a file that is accessed is likely to be accessed
again in the near future)

Source : Jonathan Dukes

9

17

AFS: Features
Whole-file serving: The entire contents of directories and
files are transmitted when they are requested by clients
Whole-file caching: Entire files are cached on client hard-
disks – the cache is persistent and survives crashes and
reboots
When a client opens a file and its cache does not contain a
current copy of the file, the server holding the file is found
The server sends a copy of the file to the client
Read and write operations on the file are performed on the
locally cached copy
When the file is closed by the client application, if the file
has been updated, the updated version is sent back to the
server and becomes the new server copy

Source : Jonathan Dukes

18

AFS: Architecture

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

Two components (User level)

open()/close()
Interception

10

19

/ (root)

tmp bin cmuvmunix. . .

bin

SharedLocal

Symbolic
links

AFS : Namespace

20

AFS : Typical Transfer
User process UNIX kernel Venus Net Vice

open(FileName,
mode)

If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise ,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding ca llba ck
promises on the file.

11

21

AFS: Callbacks After Restart
Vice

Cache Cached Files
Valid Callbacks

RESTART/FAILURE

?
?

?

Entries Suspect
May have missed
updates

Revalidate using file modification
timestamp

Some cached files
now have invalid
callback promises

22

AFS: Semantics
True one-copy file semantics would require that when an
update occurs, every cached copy of a the file is updated
before further accesses occur at any location –
impractical
Instead, AFS implements a well-defined approximation to
one-copy file semantics
In the case of the AFS open operation (AFS-2) the
following consistency guarantees are given:

If there is no failure, then the client will receive the up-to-date
copy of the file from the server
Otherwise, in the case of failure, the client will receive a copy of
the file that is no more than T seconds out of date, where T is the
time that can elapse before Venus will validate its callback
promises after communications failure

Source : Jonathan Dukes

12

23

AFS: Accessing a file

File Identifier (fid) format
Vice server functions accept only fids to identify files

Venus client is responsible for converting user-supplied path names into the fids
used to communicate with Vice server

Once a remote file has been opened …
all reads and writes can be directed to the local copy of the file

When a file is closed …
Venus client updates the Vice server with the new copy of the file

Read only Replication

Volume Number File Index Uniquifier

Identifies AFS
volume number

containing the file
Identifies

file

Uniquifier
allows file

indices to be
reused

IP2344

ServerVolume

Inode 2File Index
2

Inode 1File Index
1

Volume 2344

24

Roadmap

Evaluation of an AFS Implementation
Discussion of Design Improvements
Evaluation of the AFS ImprovementsEvaluation of the AFS Improvements
Comparative Study with Sun’s NFS
Operational Issues

13

25

What happened after doing all
this?

Andrew workstation is only 19% slower than stand alone.
Prototype workstation was 70% slower than stand alone

Copy and Make sensitive
to increased load

Callbacks help!

26

Scalability of New AFS

Gain

14

27

Scalability (cont.)

28

What about server loads?

15

29

What are the clients up to?
--GetTime and FetchStatus most
frequently called functions
--Fetches dominate Stores --RemoveCB frequent for a BBS server

--Implement RemoveCB for a group of
files

30

Roadmap

Evaluation of an AFS Implementation
Discussion of Design Improvements
Evaluation of the AFS Improvements
Comparative Study with Sun’s NFSComparative Study with Sun’s NFS
Operational Issues

16

31

Case study: NFS
Sun Network File System (NFS)

Key concept: reads and writes of open files are redirected
across the network from the client to the remote host that
holds the file

Two components
Client module (provides transparency)
NFS server module

Communication
Client and server modules communicate using remote procedure
calls (RPC)

Stateless

32

UNIX kernel

protocol

Client computer Server computer

system calls

Local Remote

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

NFS

UNIX

UNIX kernel

Virtual file systemVirtual file system

O
th

er
fil

e
sy

st
em

NFS: Architecture

File system id I-node # I-node generation #

17

33

NFS : Namespace

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at
/export/people in Server 1; the file system mounted at /usr/staff in the client is actually the
sub-tree located at /nfs/users in Server 2.

34

Case study: NFS
Client caching

NFS client modules cache the results of read, write, getattr
and lookup operations to improve performance by decreasing
the number of requests sent to servers

Client caching – reads
Clients poll servers to check currency of cached data
Timestamps are used to validate cached blocks of data

Tc is the time when the cache entry was last validated
Tm is the time when the data was last modified

Client caching – writes
When a cached page is modified by a client, the cache entry
is marked as dirty
Dirty pages are flushed asynchronously to the server, either
when the file is closed or when a client sync occurs

18

35

Experiments

AFS modifications are orthogonal to NFS.
Cold cache/warm cache AFS experiment.
NFS has serious functional problems as high
load due to lost RPC packets.

36

Scalability Comparison

Its all about ScanDir,
ReadAll and Make

19

37

Utilization Comparison

38

Disk Usage Comparison

20

39

Latency & Traffic

NFS generates more traffic

Latency of AFS is close to NFS
If file in cache
If not, depends on the size

40

Summary of Comparison

AFS scales better than NFS
NFS was never meant to

Small scale performance of AFS is
acceptable also
AFS code into the kernel has further potential
for improvement
Well defined consistency semantics
Security and Operability

21

41

Roadmap

Evaluation of an AFS Implementation
Discussion of Design Improvements
Evaluation of the AFS Improvements
Comparative Study with Sun’s NFS
Operational IssuesOperational Issues

42

Operational Issues

Establish a volume for each user.
Allow volume movement
Implement Quotas
Read-only backup

22

43

Conclusion

Quote : “We look upon the current state of
AFS with satisfaction”

Grad students finally got some well deserved rest

The New AFS has good scalability
Compares favorably to NFS
Illustrates a nice approach to system building
using intuition and measurement to improve
performance

44

Discussion

Server resolves path
name

Using file idsUsing file handlesName lookup

Only file blocksWhole files and
directories and
attributes

File blocks, name to
fhandle mapping,
attributes, name
cache (successful
lookups)

Cache contents

Prefix tableSystem wide tableExtend Unix mount
table

Locating file server

Designed for 100s of
workstations (one
workgroup)

Order of 1000s of
workstations

Can support order of
100s of clients

Scale

Single system imageScalabilitySimplicity and easy
coexistence with
BSD

Design goal

Client memoryClient disk, client
memory

Client memoryCache locations

SpriteAFSNFSFeatures

23

45

Discussion

Delayed writeWrite-on-closeWrite-through or
delayed write

Cache write policy

Not soScalableNot soScalability

Client drivenserver drivenClient drivenType of Protocol

Unavailable if server is
unreachable

Limited availability if
server is
unreachable

Not providedAvailability

CompleteSession vise
semantics
(predictable)

Not provided Consistency

statefulstatefulstatelessServer type

46

Discussion

Uniform namespace
to all clients, more
totalitarian

ProvidedProvidedLocation
Transparent Naming

Not providedIndependent (through
volumes)

Not providedLocation
Independence

NoneRead only volumesNoneReplication

Need a recovery
protocol to
reconstruct server
state

Loss of callback
state. Clients must
throw away their
caches or reestablish
callbacks

Dead server
Infinitely slow server
Rebooted server
slow server

Crash Recovery
(server crashes)

24

47

Questions & Answers

