
1

OS Support for Web Services

An integrated view

By

Saumitra M Das

Why you should spend 1.53 hours 
listening to this?

• Huge set of untrustworthy users
• Short TCP connections
• Long and variable network delays
• Transient flaky network connections
• No domain administration
• Large penalties for failure
• No downtime possible
• No load control



2

Motivating Arguments

• What we have
– Poor scalability
– Priority inversion
– Unfair resource allocation
– Livelock under excess load
– Instability under DoS attacks
– No way to prioritize request handling

• What we need
– Efficient support for event driven and multi-threaded servers
– Scheduling control
– Resource management
– Scalability
– Stability under DoS attacks

What do we want?
The BIG picture

“Ultimately the driving force for this 
discussion is how to get a better performing 

web server by hook or by crook”
“This problem is serious and warrants 

modifications to the OS, since they can be 
sold as a product by itself and doesn’t need 

to be reflected on the clients”



3

Presentation Structure
• An overview of the problem with a glance at server architectures
• Introduce the radical of a server OS based in exokernel principals. 

Describe the Cheetah server and explore if exokernels are viable 
design choices

• Special Topics
– XN <User Specific Low Level Disk Access>
– ASH <Application Specific Handlers>
– ILP <Integrated Layer Processing>
– RC <Resource Containers and Differentiated QoS>
– LRP <Lazy Receiver Processing>
– API Improvements
– SCF <Connection Scheduling>
– I/O LITE <Unified Buffering>

Why is this so troublesome?

• Current OS were designed for timesharing, database or file service where more 
time was spent in user mode, whereas servers make very frequent kernel calls 
and access I/O very frequently

• Server Application has no control over system resources. You cant prevent 
low priority clients from hogging resources

• PCB lookup algorithms and other TCP implementation specific parameters are 
out of control

• Linear time select() call limits scalability
• TCP is optimized for long connection times but HTTP requests open up 

frequent short-lived TCP connections 
• Under heavy load servers end up in “livelock”
• No prioritization of I/O streams for differentiated QoS



4

Evolution of server architecture

Fork Fork Master Forked
Servers

Domain Sockets

Forked
Servers
Accept()

Apache

Select()

Master Forked
Processes

Squid

Serves static pages
Implement Functionality

Libraries for dynamic pages

Process per connection server with a master process

NCSA httpd



5

Process per connection server without a master process

Apache

Single Process Event Driven Server

Squid, Zeus,
thttpd



6

Single Process multi threaded server

Altavista

Inktomi
Traffic Server

Typical High Performance Web Server



7

Architecture Specific Problems

• Event Driven Server <require scalability and efficient event message delivery, 
single thread of control should not block, asynchronous notification to server 
of change of state>
– SIGIO can be used for notification but gives no other information…for ex 

which descriptor is ready
– SELECT() scaled poorly with a large number of descriptors
– Lack of non-blocking I/O

• Multi-Threaded Server
– Kernel threads require kernel calls for sync and context switch
– User threads block all other threads in the process if one blocks
– Kernel must support massively threaded processes
– Loads of threads cause context switching overhead and high TLB miss 

rates

Approach 1

• Place a server on top of a general purpose 
OS
– Simplifies construction
– Forces use of overly general OS abstraction
– High performance in this approach requires 

very powerful hardware



8

Approach 2

• Create an OS specifically designed for a 
single server configuration
– Different OS constructed for different server 

types
– Too much implementation effort
– No resource multiplexing among servers

What to do : SOS !!

• Set of abstractions and runtime support for 
high performance servers
– Tools and standard implementation of abstractions
– Freedom to specialize server abstractions
– Protected system access for multiple application timesharing
– Choice for server applications to access hardware directly
– Direct access between disk and network removing scheduling delays, file 

system layers etc
– Event based support to remove thread concurrency issues
– Integrated Layer Processing



9

What do you need for this?

• An “extensible” kernel
• Exokernel OS architecture
• Can be put into UNIX or NT

• Note : keep in mind that is a hotly debated 
area. Some people feel this is leading OS 
research in the wrong direction

Exokernels

• Expose hardware to applications to the greatest degree 
possible while maintaining protection between processes

• Exokernel interface seeks to remove abstraction till it 
reaches the point of protection

• More communication paths between user and kernel space. 
Presence of kernel initiated communications

• Signal mechanisms are not rich enough or kernel initiated 
communication. Slow, inflexible, not much information, 
no queuing.

• Performance improvements seen in Xok show 10-300% 
for unmodified apps and 800% for modified apps



10

SOS Architecture

• Specialization
– Specializing abstractions to applications

• Direct device-to-device access
– Eliminate scheduling, file system and network layer 

delays
• Event Driven Organization

– Non blocking I/O and event driven organization to 
achieve concurrency without problems

• ILP compiler support
– Multiple layer processing integration support

Implementation Details

• Server applications manage PCBs
• Specification of last transfers
• Pre-computed checksums
• Highly configurable non-blocking file system
• Combined copy-free disk cache/retransmission pool
• Pre-allocated PCBs to reduce setup latency and tuning for 

large number of TIME_WAIT states
• Header pre-computation
• Disk allocation by hyperlinks



11



12

So what do we do

The lazy approach
I have spent too much 
Energy writing BSD
Gimme a break! To hell
With you “exowhatever”

The ambitious approach
This is way cool get me an
Endless supply of pizza and
I’ll start on writing BSD again

Are exokernels viable ?

Maybe…. They do have several things against 
them such as complexity, interoperability and 
protection problems. Maybe the answer lies in 
applying the aggressive enhancements seen in 

exokernels to current OSes.
My view is that exokernel performance tells us 
what is lacking in the general OS designs. They 

are like warning bells to performance bottlenecks 
and though a great tool for research may not be 

particularly viable 



13

Special Topics

XN <Application Specific Disk 
Access>



14

XN

• Allows a server application to implement it’s own 
file system

• Each application may individually manipulate disk 
blocks without concern that another application 
may corrupt it

• Users have complete control of allocation patterns 
and disk structure

• XN provides stable storage at the level of disk 
blocks by exporting a buffer cache registry

XN 

• XN uses UDF <metadata translation functions>
• UDF allow the kernel to handle any metadata layout without understanding the 

layout
• UDFs are stored as disk structures called templates <ex UNIX would have 

templates for data blocks, inodes, indirect blocks etc>
• Each template T has one UDF:owns-UDFt
• For a piece of metadata m of template T owns-UDFt(m) returns the set of 

blocks which m points to and their template type
• Ex. You want to allocate a disk block b, by placing a pointer to it in metadata 

m, libFS will call XN with m,b and proposed modifications to m(list of bytes). 
XN runs own-UDFt(m) makes a copy of m as m’ and runs owns-UDFt(m’). 

• Then verifies if own-UDFt(m)=own-UDFt(m’)+b
• Also acl-ufs(m,b,capabilities) is used for protection of data



15

Application Specific Handlers

User Level Communication

• Problems
– Communication code is not integrated with OS
– Very long round trip times if process is not 

scheduled
– Even if preemptive scheduling is done it is very 

costly to be done for every packet that arrives
– Certain NIC drivers use a limited buffer for 

copying and the OS needs to make copies 
anyway if the process is not scheduled



16

User Level Communication

• Requirements [have the cake and eat it]
– Performance of in-kernel protocol with flexibility of 

user-level protocols

• Solution Considerations
– Control of where to copy a message on arrival
– Do checksums and byte swaps as well while copying 

[ILP sort of]
– General computation
– Message response by application

How do we manage this?

• Application Specific Handler
– User code downloaded to the kernel and run in 

response to a message
• Fast Upcall

– Handler run in response to the message in user-
space . <Asynchronous>



17

The three mechanisms

APP APP APP

OSOS OSOS OSOSASH

Handler

ASH F-Up call Old way

Application Specific Handlers

• User written handlers that are safely and 
efficiently executed in the kernel in 
response to a message arrival

• Written by application programmers, 
downloaded in to the kernel, invoked after a 
message is multiplexed



18

Application Specific Handlers

• Dynamic control of message copying.
• Message Initiation for low latency message 

replies
• Perform general computation for control 

operations at message reception
• Integrated Layer Processing

Integrated Layer Processing



19

Integrated Layer Processing

• Data manipulation – is one of the costliest aspects 
of data transfer

• Message data passing from one protocol to 
another in system data structures requires loading 
and storing each byte of the message

• Integration combines manipulation from a series 
of protocols into a pipeline that shares access to 
the same data structure

Integrated Layer Processing



20

DILP

• Data manipulations such as checksumming 
or conversions can be integrated into the 
data transfer engine itself

• Can be used with ASH or FUP

ILP Gains



21

Resource Containers & 
Differentiated QoS

Resource
Model
In
Current
OSes



22

Resource Containers

• A resource container is an abstract OS entity that 
logically contains all OS resources used for a 
particular activity

• Containers have attributes used to provide 
scheduling parameters and QoS

• There is a distinction between protection domains 
and resource principles

• Each thread has a container binding and multiple 
threads might have the same binding



23



24

Lazy Receiver Processing

Current Model Problems

• For network intensive applications , the kernel does not 
control or account for resource consumption accurately

• Execution of software interrupts is done at the cost of the 
“victim” process

• Network processing occurs not at the priority of the 
process but at a higher priority than any application

• Crux -> system resources in network processing are 
generally beyond control of the application
– Inaccurate accounting
– Eager beaver processing
– Ineffective load shedding
– Lack of traffic separation



25

Current Network Processing Model

HTTP Connection Timeline



26

LRP <Lazy Receiver Processing>

• Per-socket queue is used <NI channel>
• Network interrupt handler de-multiplexes incoming 

packets according to receive queue. Early packet discard is 
implemented

• Sender & Receiver protocol processing done at the priority 
of the resource principal

• Early de-multiplexing done in software or hardware to 
identify resource principal

• IN FACT THE DPF MECHANISM IS THE MOST 
EFFICIENT THOUGH NOT USED HERE



27

API Improvements

The Select() & ufalloc() call

• Information about descriptors are passed to the 
kernel using 3 bitmaps

• Problems
– Each call to select() has costs proportional to number of 

descriptors
– No notion of priority for a socket for QoS
– Busy servers spend upto 60% of their time inside 

select()
– Ufalloc() linear search penalty to find lowest numbered 

descriptor



28

Solutions

• Select()
– Preserve information about change in state of a socket between 

select_wakeup() and do_scan()
– Inspect only those sockets that need inspection
– For each thread three sets are tracked – READY, INTERESTED 

and HINTS <updated by protocol layer>

• ufalloc()
– Make the search logarithmic time instead by using a two level tree 

of bitmaps

Squid response 1259 byte files



29

Connection Scheduling

Connection Scheduling

• Ordering of concurrent connection servicing is normally 
left to the OS

• What effect does SCF have on scheduling? Can servers use 
knowledge of “size” to improve mean response time?

• No free lunch -> remove fairness
• Conclusions of this work

– Apache does not favor short connections
– SCF can improve performance by a factor of 4-5 in moderate loads
– SCF scheduling does not significantly penalize long-connections !!



30

Size of client base

Long Jobs don’t suffer that much in SCF scheduling



31

Unified Buffering

I/O Lite – the unified buffer cache

• Allows applications, inter-process communication , file systems and 
disk cache to use the same buffer

• Requirements : single physical copy, concurrent access, preserved 
storage, identification of previously seen data

• Benefits Application independent, No redundant copying, Multiple
buffering, Cross system optimization



32

The Final Solution???

An overall approach to a great web-server needs to take into 
account a lot of considerations. I would envision ->

• Performance conscious design like the Flash webserver
• A unified buffering mechanism like I/O Lite 
• The resource container model is definitely needed to 

provide QoS
• To provide QoS we also need LRP which can have early 

de-multiplexing based in hardware
• A combined SCF / Priority weighted Connection 

scheduling server
• Integrated Layer Processing capable network code


