
1

1

LARD
(Locality Aware Request Distribution)

By
Saumitra M Das

2

Outline

Motivation
Introduction & Background
Basic and Detailed Idea
Issues and Optimizations
Performance Evaluation

2

3

Motivation
JUSTIFYING DOING ALL THIS WORK

Demand is growing on network servers
Why?, you ask..

Internet is growing
BW is increasing
Site consolidation

Cheaper $olution$ are attractive
Inexpensive PCs and LANs
Parallelizable nature of job

4

Motivation
FOCUS OF THE WORK

How should this box behave so
that we save money.

In other words, what policy should it use for request
distribution so that throughput is maximized with
minimum utilization of resources.

3

5

Motivation
DISSECTING THE TITLE

Locality
Taking advantage of files already cached in back-
end server’s memory
What does this mean?

Requests accessing same data be sent to the same set
of servers

So, locality aware is…
Is that all we need?

If so, you could go home instead of listening to me.

6

Motivation
DISSECTING THE TITLE

It is only half the picture
What about distribution ?

Load balanced system
Distribute requests evenly among back-end servers

What do we want in the ideal case?
Improve hit-rate and response time

Many studies focus only on one aspect and
ignore the other

4

7

Introduction
REQUEST DISTRIBUTION PROTOCOL V 1.0

Round Robin Request Distribution

Diagram Source: A Khaleel, A.Reddy, TAMU

8

Introduction
REQUEST DISTRIBUTION PROTOCOL V 2.0

File Based Request Distribution

Will this work for a web workload ?
Diagram Source: A Khaleel, A.Reddy, TAMU

5

9

Introduction
IS REQUEST DISTRIBUTION PROTOCOL V 2.0 ALL WE NEED?

This is the problem

This would work

10

Introduction
REQUEST DISTRIBUTION PROTOCOL V 3.0

Client Based Request Distribution

Diagram Source: A Khaleel, A.Reddy, TAMU

6

11

Introduction
REQUEST DISTRIBUTION PROTOCOL V 4.0

Locality Aware Request Distribution
Broadly based on file-based scheme
Addresses the issue of load balancing
Each file assigned a dynamic set of
servers instead of just one server
Each server assigned on average a
static set of files instead of a dynamic
set

12

Introduction
CONTRIBUTION OF THE PAPER

Scheme designed to achieve both
locality and load balancing
Simulation studies and comparisons
Prototype Implementation and
Evaluation

7

13

Which network site?

Which server?

“Contact the weather service.”

server array A

server farm B

better old solutions
DNS round robin [Brisco, RFC 1794]

today’s buzzwords
content-aware traffic management
content switching (L4-L7)
server switching

not-so-great solutions
static client binding
manual selection
HTTP forwarding

Background
SERVER TRAFFIC MANAGEMENT

Source: Jeffrey Chase, Duke

14

Background
SERVER TRAFFIC MANAGEMENT

server array

Clients

L4: TCP
L7: HTTP

SSL
etc.

Goals
server load balancing
failure detection
access control filtering
priorities/QoS
external VIP management
request locality
caching

smart
switch

virtual IP
addresses

(VIPs)

What to switch/filter on?
L3 source IP and/or VIP
L4 (TCP) ports etc.
L7 URLs and/or cookies
L7 SSL session IDs

Source: Jeffrey Chase, Duke

8

15

Background
WHAT CAN YOU DO WITH A L4 SWITCH

server array

load
balancer

Issues
switch redundancy
mechanics of L4 switching
handling return traffic
server failure detection (health checks)

Key point: the heavy lifting of server selection
happens only on connect request (SYN).
Performance metric: connections per second.

Policies
random
weighted round robin (WRR)
lightest load
least connections

Limitations
connection-grained
no request locality
no session locality

Source: Jeffrey Chase, Duke

16

Background
HOW TO SELECT THE SERVER? – THE OLD WAY

/* initially index = 0, L = (S0,S1,...,Sn-1) */
While (1) {

i == index;
if (i == 0) {

cw--;
if (cw <= 0) cw = max of W(Sn);
if (cw == 0) return NULL;

}
if (W(Si) >= cw) {

index = (i + 1) % n;
return Si ;

}
else

index = (i+1) % n;
}

9

17

Background
L4 SWITCH + WRR

Pros:
high routing throughput

Cons:
Content-blind scheduling
Difficult to compute weights accurately

insufficient load information, load information feedback delay & overhead
Dynamic load imbalance across servers

TCP router

Collector

user

kernel

Server
2

Server
1

Server
n

weights

(3)

(3) periodic script execution and feedback
- queue length (cpu, disk)
- amount of allocated network buffer

(1) number of active connections

(1)

(2)(2) periodic polling (http request/response)

18

Background
WHAT CAN YOU DO WITH A L7 SWITCH?

server array

web
switch

Issues
HTTP parsing cost
URL length
HTTP 1.1
session locality

Example: Foundry
host name
URL prefix
URL suffix
Substring pattern
URL hashing

Idea: switch parses the HTTP request,
retrieves the request URL, and uses the
URL to guide server selection.

Advantages
separate static content from dynamic
reduce content duplication
improve server cache performance
cascade switches for more complex policies

a,b,c

d,e,f

g,h,i

Source: Jeffrey Chase, Duke

10

19

Background
L7 SWITCH SCHEMATIC

Benefits
Performance improvement of back-end servers

cache affinity(locality) based scheduling
Easy to specialize the back-ends for certain types of content or
services

Front-end

Client

Back-end
servers

connection is handed off response

request
TCP/IP

LAN

In
te

rn
et

establish
a connection

dispatcher
(httpd)

Handoff
connection

handoff
selects a server

Scheduling granularity
= connection

but, content-aware
scheduling

20

Basic Idea
THE LARD ALGORITHM

server array

LARD
front-end
(a,b,c: 1)
(d,e,f: 2)
(g,h,i: 3)

Idea: route requests based on request URL,
to maximize locality at back-end servers.

Policies

1. LB (locality-based) is URL
hashing.
2. LARD is locality-aware & LB:
route to target’s site if there is one
and it is not “overloaded”, else pick
a new site for the target.

a,b,c

d,e,f

g,h,i

LARD front-end maintains an LRU
cache of request targets and their

locations, and table of active
connections for each server.

Source: Jeffrey Chase, Duke

11

21

Basic Idea
THE LARD ALGORITHM

22

Basic Idea
THE LARD ALGORITHM – WHAT IS LOAD?

What is the load here
Load = # of active connections

Why
Good summary metric
Robust
Available in front end
Simple
Quickly adapts

12

23

Basic Idea
THE LARD ALGORITHM - INTUITION

Tlow = load below which a back-end is
likely to have idle resources
Thigh = load above which node is likely
to cause substantial delay in serving a
request
How to choose these two?

The study chose 25 and 65

24

Basic Idea
THE LARD ALGORITHM – HOW TO CHOOSE THESE

Tlow = f (back-end speed)
Choose Tlow high enough to avoid idling
of back-ends

Thigh is a different issue
Thigh – Tlow should be low enough to limit
the delay variance among the back-ends
Thigh – Tlow should be high enough to
tolerate short term load fluctuations
without affecting locality

13

25

Basic Idea
THE LARD ALGORITHM – HOW TO CHOOSE THESE

Thigh – Tlow

M
ax

 D
el

ay
 D

iff
er

en
ce

Thigh – Tlow

Th
ro

ug
hp

ut

D

Thigh = (Tlow + D/R) / 2

R = average request service time

26

Basic Idea
THE LARD ALGORITHM – TO REASSIGN OR NOT TO REASSIGN

THAT IS THE QUESTION

14

27

Issues
HOW & WHAT TO IMPROVE?

WHAT
If back-end serving target x fails ?

Replicate (in the paper)
If load on all nodes rises to 2*Thigh?

Admission Control (in the paper)
If the front-end is overwhelmed?

Distributed Distributor (follow up paper)
If the workload is primarily dynamic content?

LARD for Dynamic Content (attempt by students)
If acting as a proxy is too much overhead for the front-
end?

TCP Handoff not Splicing (in the paper)
If connections are persistent

P-HTTP support [ARON99] (follow up paper)

28

Optimizations
REPLICATION

Why
to prevent a single target to cause a
back-end from overloading

How
Any ideas…?

15

29

Optimizations
REPLICATION

The front end maintains a mapping
from targets to a set of nodes that
serve the target.

Requests for a target are assigned to
the least loaded node in the target’s
server set.

If a load imbalance occurs, the front
end checks if the server set has
recently changed or not(within k
seconds), if so, it picks a lightly loaded
node and adds that to the set.

If a request has multiple servers and
has not moved or had a new one
added, the front end needs to remove
one to keep the degree not too high.

30

Optimizations
ADMISSION CONTROL

Why
To prevent load on all nodes to become > 2*Thigh
and LARD=WRR

How
Front-end limits total number of connections to

S = (n-1)*Thigh + Tlow - 1 , (n = number of back-end nodes)

At most (n-2) nodes can have a load >= Thigh
while no node has load < Tlow

All n nodes can have load > Tlow

16

31

Optimizations
TCP SPLICING

TCP Splicing

Client Front-end Back-end

request

connection
reuse

response, ACK
packet

rewriting

connection
pre-fork

SYN
SYN, ACK

ACK
SYN

SYN, ACK
ACK connection

mapping request

response, ACK
ACK ACK

32

Optimizations
TCP HANDOFF

Client Back-end

Dispatcher

TCP/IP

response

SYN
req

ACK ACK

handoff
req

Front-end

Handoff

Forward

TCP/IP TCP/IP
SYN
req

Handoff

TCP Handoff

17

33

Optimizations
TCP HANDOFF – STATE TRANSFER

Key : individual server node can masquerade
as the dispatcher as long as it has the
appropriate connection state.

Caveats:

1. Dispatcher cannot accept any options such
as SACK from the client which the
backend does not support

2. Dispatcher must choose an initial flow
control window that each server can satisfy

34

Optimizations
WHY IS HANDOFF BETTER

With handoff, the
throughput scales
with the cluster size
more than splicing

1. Splicing though better than a relay
has the overhead due to HTTP
response traffic

2. Handoff requires kernel modification
to both frontend and backend but
does not require HTTP response
traffic to go through distributor

18

35

Simulation Results
SIMULATION MODEL

CPU : Pentium II 300 Mhz
Network : 100 Mbps LAN
Disk : WD Enterprise
Caching : GDS
Filesystem : Berkeley FFS
Input :Rice & IBM trace
Strategies : WRR, LB-Locality, LARD /R

36

Simulation Results
THROUGHPUT RESULTS

19

37

Simulation Results
MISS RATE

38

Simulation Results
LOAD BALANCING

20

39

Simulation Results
IBM VERSUS RICE WORKLOAD

IBM RICE

40

Simulation Results
SENSITIVITY TO CPU (LARD & WRR)

LARD/R

WRR

21

41

Simulation Results
SENSITIVITY TO EXTRA DISKS (LARD & WRR)

LARD/R

WRR

42

Experimental Results
ENVIRONMENT

Pentium II 300 Mhz 128 MB
100 Mbps Fast Ethernet
FreeBSD 2.2.5
Apache 1.2.4
Rice Trace

22

43

Experimental Results
TESTBED

44

Experimental Results
THROUGHPUT

23

45

Issues
HOW & WHAT TO IMPROVE?

WHAT
If back-end serving target x fails ?

Replicate (in the paper)
If load on all nodes rises to 2*Thigh?

Admission Control (in the paper)
If the front-end is overwhelmed?

Distributed Distributor (follow up paper)
If the workload is primarily dynamic content?

LARD for Dynamic Content (attempt by students)
If acting as a proxy is too much overhead for the front-
end?

TCP Handoff not Splicing (in the paper)
If connections are persistent

P-HTTP support [ARON99] (follow up paper)

46

Optimizations
DISTRIBUTED DISTRIBUTOR – TWO SCHEMES

Why we need to do this. We need this

24

47

Distributor

Distributor

Distributor

LANFront end

Server

Server

Server

dispatcher

switch

Back end

Multiple Front Ends

LAN

Server

Distributor

Distributor

Server

Server

Distributor

dispatcher

Co-located Distributors and Servers

Optimizations
DISTRIBUTED DISTRIBUTOR – TWO SCHEMES

48

Optimizations
DISTRIBUTED DISTRIBUTOR

Multiple front ends mechanism:
1. Poor load balancing
2. Efficient partitioning of cluster nodes into either front end or back

end nodes depends upon the workload (unpredictable),
which may lead to low cluster utilization.

Co-located distributors and servers:
1. Cluster utilization is high & distributor bottleneck eliminated.
2. Layer 4 switch employed so scalability increased.
3. Centralized switch balances the load on each distributor

Overall disadvantages: A little latency incurred.

Overall Advantages: Scalability is very high

25

49

Optimizations
DYNAMIC CONTENT

Serving dynamic content requires
More CPU time and disk bandwidth
More complex

What can be done?
DLoad = Wcpu*CPUutilization + Wdisk*Diskutilization
Reassign target documents when

node is overloaded (connections > 2Thigh)
node is overloaded and ∃ node w. connections < Tlow
node DLoad is high and “under-dloaded” node exists

Shown to perform better than LARD

50

Optimizations
DYNAMIC CONTENT

26

51

Optimizations
PERSISTENT CONNECTIONS

Problem :
LARD operates at the granularity of TCP
connections
With HTTP/1.1, multiple HTTP requests may
arrive on a single TCP connection
Result (2 problems)

All requests arriving on a given connection must
be served by a single back-end node
A back-end node may receive requests that it
cannot serve if it is a specialized node

52

Optimizations
PERSISTENT CONNECTIONS - SOLUTIONS

Redesign handoff to support HTTP/1.1 by allowing
the front-end to migrate a connection between
back-end nodes
New handoff mechanism : back-end request
forwarding

front-end hands off client connections to an appropriate
back-end node using the TCP single handoff protocol
If request arrives on a p-connection that can/should not be
served by the current back-end A, the connection is not
handed off to another back-end node B
front-end informs A which backend (B) should serve the
request.
A then requests the content directly from B, and forwards the
response to the client on its client connection

27

53

Optimizations
PERSISTENT CONNECTIONS – EXTENDING LARD

Factors to consider
Choice of assignment constrained by previous choice
Reassignment overhead should be considered

Extended LARD
First request on a p-connection assigned backend using
original LARD policy
For subsequent requests

If the target is cached at the connection handling node or if the
disk utilization on the connection handling node is low (less than
5 queued disk events), then the request is assigned to the same
Else, the three cost metrics (locality, load, replacement) are
computed over the connection handling node and any other
back-end nodes that have the target cached. The request is
then assigned to the node that yields the minimum aggregate
cost

54

Optimizations
PERSISTENT CONNECTIONS – RESULTS

28

55

Conclusions
PERFORMANCE EVALUATION OVERWIEW

LARD paper compares SLB/WRR and LB with
LARD approaches:

simulation study
small Rice and IBM web server logs
tweak simulation parameters to achieve desired result?

Nodes have small memories with greedy-dual replacement.
WRR combined with global cache-sharing among servers
(GMS).

WRR/GMS is global cache LRU with duplicates and cache-
sharing cost.
LB/GC is global cache LRU with duplicate suppression and no
cache-sharing cost.

56

Conclusions
PERFORMANCE EVALUATION RESULTS

1. WRR has the lowest cache hit ratios and the lowest
throughput.

There is much to be gained by improving cache effectiveness.

2. LB achieve slightly better cache hit ratios than LARD.
WRR/GMS lags behind because of duplicates.

3. The caching benefit of LB is minimal, and LB is almost as
good as LB/GC.

Locality- request distribution induces good cache behavior at the back
ends: global cache replacement adds little.

4. Better load balancing in the LARD strategies dominates the
caching benefits of LB.

LARD/R and LARD achieve the best throughput and scalability;
LARD/R yields slightly better throughput.

29

57

Conclusions
ISSUES AND QUESTIONS

1. LB (URL switching) has great cache behavior but lousy
throughput.

Why? Underutilized time results show poor load balancing.

2. WRR/GMS has good cache behavior and great load
balancing, but not-so-great throughput.

Why? How sensitive is it to CPU speed and network speed?

3. What is the impact of front-end caching?
4. What is the effectiveness of bucketed URL hashing policies?

E.g., Foundry: hash URL to a bucket, pick server for bucket based on
load.

5. Why don’t L7 switch products support LARD? Should they?
[USENIX 2000]: use L4 front end; back ends do LARD handoff.

58

Questions & Ambiguous
Responses

30

59

LARD motivation

60

LARD Intuition

31

61

Socket
layer

TCP

IP input

Timer Workload
Socket
layer

Packet
rewriter

Server node
table

Network
interface

Connection
Mapping

table

Packet
analyzer

TCP

IP output

Packet
transmitter

Dispatcher
Handshake

handler

Detailed Idea
IMPLEMENTATION SCHEMATIC

